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Background. Angry outbursts are an important feature of various stress-related disorders, and commonly lead to
aggression towards other people. Findings regarding interpersonal anger have linked the ventromedial prefrontal cortex
(vmPFC) to anger regulation and the locus coeruleus (LC) to aggression. Both regions were previously associated with
traumatic and chronic stress symptoms, yet it is unclear if their functionality represents a consequence of, or possibly also
a cause for, stress symptoms. Here we investigated the relationship between the neural trajectory of these indicators of
anger and the development and manifestation of stress symptoms.

Method. A total of 46 males (29 soldiers, 17 civilians) participated in a prospective functional magnetic resonance
imaging experiment in which they played a modified interpersonal anger-provoking Ultimatum Game (UG) at two-
points. Soldiers were tested at the beginning and end of combat training, while civilians were tested at the beginning
and end of civil service. We assumed that combat training would induce chronic stress and result in increased stress
symptoms.

Results. Soldiers showed an increase in stress symptoms following combat training while civilians showed no such
change following civil service. All participants were angered by the modified UG irrespective of time point. Higher
post-combat training stress symptoms were associated with lower pre-combat training vmPFC activation and with
higher activation increase in the LC between pre- and post-combat training.

Conclusions. Results suggest that during anger-provoking social interactions, flawed vmPFC functionality may serve as
a causal risk factor for the development of stress symptoms, and heightened reactivity of the LC possibly reflects a con-
sequence of stress-inducing combat training. These findings provide potential neural targets for therapeutic intervention
and inoculation for stress-related psychopathological manifestations of anger.
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Introduction

The tendency to have uncontrolled angry outbursts
accompanied by aggressive behaviors is an important
feature of various anxiety and stress-related disorders
and most notably in post-traumatic stress disorder
(PTSD; Olatunji et al. 2010; American Psychiatric
Association, 2013). Research suggests that patients
with traumatic and chronic stress-related symptoms
suffer from a profound difficulty in regulating their
anger (Chemtob et al. 1994; Novaco & Chemtob,
2002), especially when interacting with other people

(Carroll et al. 1985; Jordan et al. 1992; Beckham et al.
2000; Miles et al. 2016), during which even little provoca-
tion has shown to lead these patients to behave violently
towards others (Beckham et al. 1997; McFall et al. 1999;
Jakupcak & Tull, 2005; MacManus et al. 2015). Since
anger is a major precursor to aggression and violence
(Davidson et al. 2000; Siever, 2008; Gilam & Hendler,
2015), it is possible that these patients are prone for
such aberrant behaviors because of their poor capability
to cope with anger-provoking interpersonal situations.

We recently created an interactive and realistic
anger-provoking paradigm based on a modified ver-
sion of the Ultimatum Game (UG; Sanfey et al. 2003),
a social decision-making paradigm in which two
players need to agree on how to split a sum of
money between them. Our modification induced genu-
ine interpersonal anger by incorporating repeated ver-
bal negotiations infused with angering provocations by
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an obnoxious competitor (Gilam et al. 2015). We
showed that when confronted with such provocations
during functional magnetic resonance imaging (fMRI),
individuals with a tendency for aggressive reactions (i.
e. rejecting angering unfair offers thus gaining less
money throughout the game) were angry and had
greater activation in a region of the brainstem (BS) cor-
responding to the locus coeruleus (LC) and less activa-
tion in a region of the ventromedial prefrontal cortex
(vmPFC), while individuals with a tendency for concili-
atory reactions (i.e. accepting angering unfair offers thus
gaining more money throughout the game) had an
emotionally balanced response and the reverse pattern
of brain activation – greater vmPFC and less BS/LC acti-
vation. The brain activations were specifically enhanced
for unfair compared with fair offers. This reverse pat-
tern of activation led us to suggest that the vmPFC is
involved in regulating LC-related arousal and aggres-
sive reactions towards anger provocations.

Indeed, the LC is the major source for noradrenaline
(NA) secretion in the forebrain, critically involved in
autonomic arousal and stress response (Berridge,
2008; Valentino & Van Bockstaele, 2008), and has
been shown to have a specific role in propagating
aggression (Haller et al. 1997; Haden & Scarpa, 2007).
It was suggested that the LC-NA system represents a
reorienting/alarm system in charge of averting atten-
tion towards and modifying behavior in view of sali-
ent, mostly threatening stimuli in the environment
(Berridge & Waterhouse, 2003; Liddell et al. 2005;
Corbetta et al. 2008; Sara & Bouret, 2012).
Consistently, dysfunction in the LC-NA system has
been associated with prototypical stress symptoms
such as hyperarousal, hypervigilance and aggression,
which are common in PTSD (Aston-Jones et al. 1994;
Southwick et al. 1999; Berridge & Waterhouse, 2003;
Arnsten et al. 2015).

The vmPFC has been generally implicated in emo-
tion regulation (Quirk & Beer, 2006; Phillips et al.
2008; Etkin et al. 2011), including regulating anger
and aggressive reactions (Davidson et al. 2000; Siever,
2008; Gilam & Hendler, 2015), and was shown to be
an important region displaying structural and func-
tional abnormalities associated with increased stress
symptoms (Pitman et al. 2012; Admon et al. 2013b).
Moreover, vmPFC dysfunctionality in PTSD patients
was associated with abnormal processing of emotions,
especially fear (Etkin & Wager, 2007; Milad et al. 2009).
Congruently, a leading psycho-biological model for the
development and maintenance of stress symptoms has
postulated an underlying dysfunctionality in the
neural circuit subserving emotion and arousal regula-
tion (Frewen & Lanius, 2006; Pitman et al. 2012;
Seligowski et al. 2015), with the vmPFC playing a key
role in such a circuit.

Although there seems to be a correspondence
between the neural circuits involved in processing
anger and those which are dysfunctional among
patients with stress symptoms, studies to date have
not yet investigated the neural trajectory of anger in
relation to the development and manifestation of such
symptoms. Further, since the development of stress
symptoms is dependent on exposure to an acute or
chronic stressful experience, such an investigation coin-
cides with the opportunity to disentangle predisposing
(pre-exposure) from acquired (post-exposure) neural
abnormalities. Indeed, prospective studies on popula-
tions at risk of stress exposure have suggested that
unbalanced levels of pre-exposure anger and aggressive
tendencies are not only a consequence of, but may also
causally contribute to, the development of stress symp-
toms (Heinrichs et al. 2005; Meffert et al. 2008; van
Zuiden et al. 2011; Lommen et al. 2014). However,
these few prospective studies assessed anger using self-
reported questionnaires and not actual behavior during
a provoking interpersonal situation. Therefore, the rela-
tionship between stress symptoms and individual dif-
ferences in coping with anger, and specifically the
neural correlates associated with reactivity towards
and regulation of angering provocations, remains
largely overlooked.

To directly investigate the relationship between the
neural and behavioral indicators of interpersonal
anger and the development and manifestation of stress
symptoms, we conducted a prospective brain imaging
study comparing these neurobehavioral indicators
before and after military combat training. Combat
training is a highly intense period of chronic stress
(Bernton et al. 1995; Day & Livingstone, 2001) that
makes an impact on the development of stress-related
symptoms (Taylor et al. 2007; Lin et al. 2015). Moreover,
severe anger has been mostly though not solely asso-
ciated with military personnel and veterans (see
McHugh et al. 2012). Therefore, measuring brain acti-
vation related to conciliatory or aggressive behavior
during an interpersonal angering situation as well as
stress symptoms before and after combat training,
and examining the relationship between them, may
reveal neurobehavioral indicators of anger that predict
the development of stress symptoms and/or change
following exposure to combat training-related chronic
stress. This may consequently shed some light on the
functional role of anger in post-traumatic stress and
may thus provide a neural basis for the development
of therapeutic tools focused on coping with anger.

In the current prospective study, participants were a
priori healthy soldiers recruited to a combat unit in the
Israeli Defense Forces (IDF), whose behavioral and
neural responses were measured at two time points:
during the first 2 weeks of boot camp (pre-exposure)
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and approximately 1 year later at which they were
about to complete their training program (post-
exposure; Fig. 1a). An age-matched group of civilians
recruited from Israeli civil service programs was used
to control for non-specific time effects. At each time
point participants undergoing fMRI performed our
anger-provoking modified UG. Pre-exposure results
(extensively reported in Gilam et al. 2015) indicated
no differences between soldiers and civilians in any
of the measurements, including total gain accumulated
throughout the modified UG, the associated emotional
experience, as well as vmPFC and BS/LC activation
during angering unfair offers. Here we report on post-
exposure results in light of these pre-exposure findings.
We generally expected to replicate findings from the
pre-exposure time point indicating that all participants
accepted fewer unfair offers than fair offers, reported
on angry feelings as the predominant emotional
experience throughout the modified UG, especially
for unfair offers, and that there was a relationship
between the reported emotional experience and total
gain. Specifically for the soldiers, we expected to find
an increase in stress symptoms post-exposure to com-
bat training and that the neurobehavioral measures
of anger revealed pre-exposure (namely total gain,
emotional experience and vmPFC and BS/LC activa-
tion during unfair offers) and the change in these mea-
sures between pre- and post-exposure, will correlate
with stress symptoms measured post-exposure.

Method

Participants

A total of 29 soldiers (mean age 19.86, S.D. = 1.06 years)
and 17 civilians (mean age 19.24, S.D. = 0.44 years) volun-
teered to take part in both time points of this prospect-
ive study. Soldiers were recruited from an infantry unit
in the IDF and civilians from various pre-army civil ser-
vice programs (Shnat Sherut). Combat training in this
specific unit, which includes various psychological
and physical practices such as strictly enforced discip-
line, food and sleep restrictions and survival challenges,
has been shown to induce elevated stress symptoms
among soldiers (Lin et al. 2015). Pre-army civil service
includes assisting disadvantaged communities, youth
at risk, and other civic projects and conscription rates
among graduates are almost 100% and many continue
to infantry units. Approximately 1 year passed in
between the time points, at which soldiers were about
to complete their combat training but were not yet
actively deployed and civilians were about to complete
their civil service programs. The study was approved by
the Institutional Ethics Committee of the Tel Aviv
Sourasky Medical Center and of the IDF Medical

Corps. All participants provided written informed con-
sent, had completed secondary education, had no
reported history of psychiatric or neurological disor-
ders, and had normal or corrected-to-normal vision.
To note, the first time point included an additional
nine soldiers and five civilians who did not return at
the second time point (online Supplementary
Table S1). We previously showed that within the 60 par-
ticipants at the first time point (38 soldiers and 22 civi-
lians) there were no differences in any of the anger
measures including behavior, emotional reports and
brain activations (Gilam et al. 2015).

Interpersonal anger induction and emotional rating

Anger was induced using a modified version of the
UG and a post-scan emotional report was used to
measure the induced emotional experience, both of
which have been described elsewhere (Gilam et al.
2015; also see online Supplementary material).
Participants in the scanner played the responder in a
10-round repeated UG in which they had 30-s spontan-
eous verbal negotiations with a confederate proposer
at the end of each round (online Supplementary
Fig. S1 and Movie S1). Unknown to participants, the
proposer was a professional actor who during negotia-
tions improvised with scripted provocations in concert
with predefined sequences of both fair (10:10, 11:9,
12:8) and unfair (2 × 15:5, 16:4, 17:3, 18:2, 2 × 19:1) offers
allotted from a pot of 20 Israeli New Shekels (ILS;
online Supplementary Table S2). Rejecting an offer
was associated with an aggressive reaction while
accepting an offer was associated with a conciliatory
reaction. The emotional report consisted of a round-
by-round measurement of the Geneva Emotion
Wheel (GEW; Scherer, 2005), which includes 16 emo-
tions divided into two axes – valence (positive/nega-
tive) and potency (high/low).

Stress symptom questionnaires

Post-Traumatic Stress Diagnostic Scale (PDS; Foa et al.
1997)

The PDS assesses stress symptoms following specific
traumatic events. After reporting on such an event
respondents rate 17 stress symptom items experienced
in the past month in relation to this event, on a four-
point frequency scale from 1 (not at all) to 4 (almost
always).

Post-Traumatic Stress Disorder Check-List –Military
(PCL-M; Weathers et al. 1991; Forbes et al. 2001)

The PCL-M assesses stress symptoms experienced spe-
cifically in relation to military experiences. Respondents
rate each of 17 stress symptoms items on a five-point
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frequency scale from 1 (not at all) to 5 (extremely), indi-
cating the extent to which they have experienced a
specific symptom during the past month of military ser-
vice. This measure was evaluated only for the soldiers
after combat training.

fMRI acquisition and preprocessing

Brain imaging was done by a GE 3 T Signa Excite scan-
ner using an eight-channel head coil at the Wohl Institute
for Advanced Imaging, Tel Aviv Sourasky Medical
Center. Functional whole-brain scans were performed
with a gradient echo-planar imaging (EPI) sequence of
functional T2*-weighted images [repetition time/echo
time (TR/TE) = 3000/35 ms; flip angle = 90°; field of view
(FOV) = 200 × 200 mm; slice thickness = 3 mm; no gap;
39 interleaved top-to-bottom axial slices per volume].
Anatomical T1-weighted three-dimensional axial spoiled
gradient (SPGR) echo sequences (TR/TE = 7.92/2.98 ms;
flip angle = 15°; FOV = 256 × 256 mm; slice thickness = 1
mm) were acquired to provide high-resolution structural

images. To note, our modified UG was divided into two
seamless fMRI scans to reduce head-movement artifacts.

Preprocessing and statistical analyses were con-
ducted using BrainVoyager QX version 2.4 (Brain
Innovation, The Netherlands). Each scan began with
10 volumes (30 s) of blank screen which were removed
to allow for signal equilibrium. Subsequently, slice
scan time correction was performed using cubic-spline
interpolation. Head motions were corrected by rigid
body transformations, using three translation and
three rotation parameters and the first image served
as a reference volume. Trilinear interpolation was
applied to detect head motions and sinc interpolation
was used to correct them. Five soldiers and one civilian
were discarded from subsequent brain analyses due to
excessive head movements (4 mm/4°) at the first time
point, as previously reported (Gilam et al. 2015), and
for the same reason an additional four soldiers and
one civilian were discarded from analyses at the
second time point (online Supplementary Table S1).
The temporal smoothing process included linear
trend removal and usage of a high-pass filter of

Fig. 1. Combat training timeline and groups’ distributions of stress symptoms. (a) Combat training timeline and the two time
points at which participants were sampled to take part in this prospective study. (b) Differences in stress symptoms scores as
measured with the Post-Traumatic Stress Diagnostic Scale (PDS), between the two time points for the soldiers and civilians.
White bars indicate the first time point and gray bars indicate the second time point. Soldiers showed a marginal increase in
stress symptoms (^ p = 0.063) while no change was apparent for civilians (p = 0.180). Values are means, with standard errors
represented by vertical bars. (c) Distribution of stress symptom scores as measured with the Post-Traumatic Stress Disorder
Check-List – Military (PCL-M), only among the soldiers at the second time point.
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1/128 Hz. Functional maps were manually co-registered
to corresponding structural maps and together they
were incorporated into three-dimensional datasets
through trilinear interpolation. The complete dataset
was transformed into Talairach space and spatially
smoothed with an isotropic 6 mm full width at half
maximum (FWHM) Gaussian kernel.

Region-of-interest (ROI) analysis

Using a random-effects general linear model (GLM),
we extracted β values (mean parameter estimates) for
all the voxels in two ROIs identified at the first time
point (Gilam et al. 2015): a cluster in the vmPFC
which consisted of 554 contiguous anatomical voxels
(1 mm3) with the peak voxel located at the Talairach
coordinate x = 14, y = 49, z =−12; and a cluster in the
BS which consisted of 409 contiguous anatomical voxels
(1 mm3) with the peak voxel located at the Talairach
coordinate x =−7, y =−35, z =−18. This BS cluster over-
laps with the anatomical location of the LC (Keren et al.
2009). Localizing the LC from blood oxygen level-
dependent brain activity measured with fMRI has
been debated (Astafiev et al. 2010; Minzenberg et al.
2010; Schmidt et al. 2010), yet the specific location of
this cluster, and that activation before combat training
correlated with skin-conductance sympathetic arousal
and with aggressive behavior, together support that
the cluster indeed corresponds to the LC.

Data for the first time point were based on a GLM in
which eight regressors were used for each period of the
game (offer, decision, result, negotiation; see online
Supplementary Fig. S1), repeated twice to differentiate
between fair and unfair rounds. These regressors were
convolved with a canonical hemodynamic response
function. Additional nuisance regressors included the
head movement realignment parameters and the time
course of averaged activity in cortical white matter.
The fixation period was used as baseline. Data for com-
parison of the two time points were based on a separ-
ate GLM which included an additional duplication of
the eight task regressors representing the second time
point. In both GLMs, β values were averaged across
the entire ROI voxels and for each experimental condi-
tion separately. Statistical analysis was conducted on
the unfair offer periods which were associated with
enhanced activation of vmPFC and BS/LC as well as
with more anger compared with fair offers (Gilam
et al. 2015).

Data analysis

Since stress symptoms measures did not distribute nor-
mally we used the Wilcoxon signed-rank test to exam-
ine the difference between time points in each group
and Spearman’s ρ to test for correlations between

soldiers’ stress symptoms and their behavioral, emo-
tional and brain indices of anger. A mixed-model
repeated-measures analysis of variance was used to
examine differences between soldiers and civilians
across time points in the anger induction-related
behavior and emotional reports. Tukey’s test was
used for follow-up comparisons. All tests were
two-tailed.

Ethical standards

All procedures contributing to this work comply with
the ethical standards of the relevant national and insti-
tutional committees on human experimentation and
with the Helsinki Declaration of 1975, as revised in
2008.

Results

Symptomatic effects of combat training

In line with our expectation, based on the PDS symp-
toms score we observed a marginally significant increase
in symptoms in the soldiers group when comparing pre-
(0.24, S.D. = 0.83) and post- (1.79, S.D. = 4.35) exposure to
combat training (Z = 1.86, p = 0.063) (Fig. 1b). There was
no such change in the civilian group between pre-
(0.65, S.D. = 1.54) and post- (0.29, S.D. = 1.21) exposure to
civil service (Z = 1.34, p = 0.180]. Based on the PCL-M
questionnaire, soldiers showed an average symptoms
score of 28.38 (S.D. = 11.55), ranging from asymptomatic
to moderate stress symptoms levels (Fig. 1c).

Anger induction-related behavior and emotional
report

To assess behavior in the modified UG we averaged
acceptance rates (in percentage) for each fairness cat-
egory (fair/unfair). In line with standard UG results
and similar to the pre-exposure time point, we found
that fair offers (80.43, S.D. = 28.61) were accepted more
than unfair offers (21.43, S.D. = 24.60), as noted by a
main effect of fairness (F1,44 = 217.29, p < 0.001, η2p =
0.83; Fig. 2a). This result did not differ between soldiers
and civilians (F1,44 = 1.11, p = 0.300, η2p = 0.03) and for
both groups this result did not change when compar-
ing these participants between time points (F1,44 =
0.43, p = 0.518, η2p = 0.01). Next, we calculated the total
gain accumulated throughout the entire game and
used that as an objective measure of individual differ-
ences reflecting the final outcome of the modified UG.
Though total gain and overall acceptance rates highly
correlated (r = 0.949, p < 0.001), total gain is a more
accurate measure for individual differences (e.g. one
who accepted 10:10 and 4:16 offers has a different
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gain but equal acceptance rate compared with one who
accepted 9:11 and 8:12 offers).

To revalidate the overall anger induction of our
modified UG we examined the average reported emo-
tions for all UG rounds based on the two GEW axes of
potency (high/low) and valence (positive/negative)
and found a significant potency × valence interaction
(F1,44 = 32.44, p < 0.001, η2p = 0.42; Fig. 2b). Follow-up
analyses indicated that the negative high-potency clus-
ter, which includes anger, hostility, contempt and dis-
gust (hereby named the anger cluster), was the most
reported category of emotions (1.69, S.D. = 1.34), com-
pared with all other categories (p’s < 0.001). In add-
ition, there was no difference between the two
positive clusters (high potency = 0.92 , S.D. = 0.88; low
potency = 0.90, S.D. = 0.77; p = 0.998). This result did
not differ between soldiers and civilians (F1,44 = 0.01,
p = 0.914, η2p = 0.00) and for both groups this result did

not change when comparing participants between
time points (F1,44 = 0.45, p = 0.507, η2p = 0.01).

We previously showed that creating an index of the
anger v. positive clusters of emotions better explained
variability in total gain (Gilam et al. 2015). We thus cal-
culated for each participant a standardized Emotional
Valence Index (EVI): (positive cluster – anger cluster)/
(positive cluster + anger cluster). A positive EVI indi-
cated that more positive and fewer anger emotions
were reported while a negative EVI indicated the
reverse. To assess the relationship between the behav-
ior and the emotional experience induced by the mod-
ified UG we looked at the correlation between EVI and
total gain. We found that for all participants, a more
positive EVI correlated with greater total gain (r =
0.412, p = 0.004; Fig. 2c). In addition we found a signifi-
cant difference (t45 = 12.59, p < 0.001, Cohen’s d = 1.02;
Fig. 2d) between average EVI of fair (0.54, S.D. = 0.51)

Fig. 2. Anger induction-related behavior and emotional report at the second time point. (a) Participants playing the
anger-infused modified Ultimatum Game accepted fair offers more than unfair offers (p < 0.001). (b) A significant interaction
(p < 0.001) indicated that participants’ emotional experience was mostly associated with angry feelings (*** p < 0.001 for each
comparison with the other clusters). (c) As participants reported a more positive and less angered emotional experience in the
game, calculated as the Emotional Valence Index (EVI), so they had a higher total gain (Pearson’s r = 0.412, p = 0.004),
indicating more gain accumulated throughout the game. ILS, Israeli New Shekels. (d) Based on the EVI, fair offers were
associated with more positive and fewer angry feelings while unfair offers were associated with more angry and fewer
positive feelings (p < 0.001). None of these results differed between soldiers and civilians, neither at the first time point nor
across time points. In all results presented here, sample size n = 46. Values are means, with standard errors represented by
vertical bars. For a color figure, see the online article.
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and unfair (−0.50, S.D. = 0.54) offers, indicating that
unfair offers elicited more angry and fewer positive
feelings and the opposite pattern for fair offers.
Taken together, results indicated that similar to the
pre-exposure time point and in line with our expect-
ation, at the post-exposure time point there was a rela-
tionship between behavior in the game and the
corresponding emotional experience that validated
the anger induction and did not differ between soldiers
and civilians.

The relationship between soldiers’ stress symptoms
and their behavioral, emotional and brain indices of
anger

A potential methodological confound may exist in cor-
relations between anger and stress symptoms mea-
sures since physical reactions, anger, hypervigilance
and startleness are all anger and aggression concomi-
tants as well as being symptoms of post-traumatic
stress (Novaco & Chemtob, 2002; Jakupcak et al.
2007). To avoid circularity between measures and
refute this possible confound we removed these symp-
toms’ items (#5, #14, #16 and #17) from the PCL-M
score. We first assessed whether behavioral, emotional
and brain indices of anger pre-exposure as measured
by total gain, EVI, vmPFC and BS/LC activation during
unfair offers predict soldiers’ stress symptoms post-
exposure as measured by PCL-M score. We found
that higher PCL-M score post-exposure was predicted
by lower total gain (ρ =−0.450, p = 0.014, n = 29)
(Fig. 3a) and lower vmPFC activation during unfair
offers (ρ =−0.524, p = 0.009, n = 24) (Fig. 3b), as mea-
sured pre-exposure. To assess whether the change in
the same anger indices between post- and pre-
exposure had a relationship with soldiers’ stress symp-
toms post-exposure we calculated a difference score for
each index between post- and pre-exposure and then
tested the correlation with PCL-M score post-exposure.
We found that higher PCL-M score post-exposure
related to a greater increase in BS/LC activation during
unfair offers between post- and pre-exposure (ρ = 0.495,
p = 0.027, n = 20) (Fig. 3c). To note, these three signifi-
cant correlations were significant also when consider-
ing all items of the PCL (pgain = 0.011; pvmPFC = 0.012;
pΔBS/LC = 0.049). No other significant results were
found, also when considering brain activation during
fair offers (p’s > 0.445).

Discussion

Embedding dynamic social interactions to infuse nat-
uralistic anger within the classic UG paradigm we
were able to induce anger, especially during the unfair
offers, in both civilians and soldiers across two time

points. Moreover, as shown at the first time point, par-
ticipants gaining more money along the game reported
less anger as well as more positive feelings, suggestive
of the idiosyncratic link between the subjective emo-
tional experience and the tendency to accept or reject
anger-infused UG offers. In line with our hypothesis,
we found an increase, though marginal, in stress symp-
toms among a priori healthy soldiers over a 1-year per-
iod of combat training assumed to induce chronic
stress, whereas a similar period of civil service did
not have such an influence on a matched group of civi-
lians. Importantly, and confirming our hypothesis, we
found that game-related behavior and brain activation
correlated with the degree of stress symptoms among
soldiers following combat training. Specifically, as sol-
diers gained more money throughout the game and
had more vmPFC activation during unfair offers pre-
exposure, so they reported fewer symptoms following
combat training. In addition, more symptoms among
soldiers correlated with a larger increase in BS/LC acti-
vation during unfair offers over time (between pre-
and post-combat training). These findings provide
unique causal evidence that the vmPFC and BS/LC,
two major nodes in emotion and arousal regulation,
respectively, contribute to the overall vulnerability of
individuals to combat training stress symptoms.
Critically, the trajectory of this vulnerability is por-
trayed in a specific context of interpersonal anger, a
critical symptom in anxiety and stress-related disor-
ders, thus providing an ecological framework for pos-
sible therapeutic intervention.

The findings of our prospective neuroimaging study
support the suggestion that stress symptoms are charac-
terized by an underlying dysfunctionality in the neural
circuit subserving emotion and arousal regulation
(Frewen & Lanius, 2006; Pitman et al. 2012; Seligowski
et al. 2015). However, they also extend the understand-
ing of the neural mechanisms that mediate the develop-
ment and manifestation of stress symptoms in several
novel aspects. First, since vmPFC activation predicted
stress symptoms, in addition to the commonly demon-
strated acquired neural abnormality of vmPFC follow-
ing PTSD (Admon et al. 2013b), it is possible to claim
that vmPFC functionality may also serve as a predispos-
ing risk factor for the development of stress symptoms
among soldiers exposed to combat training. Strikingly,
this predictive sensitivity of the vmPFC is demonstrated
in a context of an angering interpersonal situation rather
than the commonly studied context of fear (e.g. Etkin &
Wager, 2007), which might explain why such a finding
is currently absent from predictive models of PTSD
development (Admon et al. 2013b). This also suggests
that enhanced vmPFC activation which here may pos-
sibly reflect anger-regulation capabilities might buffer
the accumulating influence of stress on the development
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of related symptoms. This is consistent with previous
more general findings indicating that emotion dysregu-
lation is predictive of the development of post-traumatic
stress symptoms (Kumpula et al. 2011; Bardeen et al.
2013).

Second, we found that when comparing the two
time points, BS/LC activation, which here seems to
reflect arousal and aggression induced by angering
provocations, increased following exposure propor-
tionately to the level of stress symptoms following
combat training. Assuming that BS activation indeed
corresponds to the LC, this to our knowledge is the
first indication in humans of a causal relationship
between alterations in the LC-NA system following
chronic stress and the development of stress symptoms
among a priori healthy individuals. This result is con-
gruent with previous findings showing enhanced
reactivity of the LC-NA system in a validated rat
model of PTSD (George et al. 2013) and supports the
suggestion that prototypical stress symptoms such as

increased arousal, vigilance and aggression are attribu-
ted to an acquired neural dysfunction and specifically
heightened reactivity in the LC-NA system (e.g.
Berridge & Waterhouse, 2003).

Taken together, our result seems to support the
proposition that angry outbursts as a stress symptom
might represent a failure to regulate low-level reactiv-
ity to threat, and this reactivity in itself might be exces-
sive due to a lowered threshold of threat detection
(Chemtob et al. 1997a, b). Within such a framework,
the LC-NA system, which is involved in averting atten-
tion and modifying behavior in view of threatening
stimuli, would be in charge of executing aggressive
reactions and following a stress-related perturbation
would be more sensitive to threat and thus more
prone to such reactions. In parallel, the vmPFC
which is involved in regulating angry and aggressive
reactions, would possibly have more difficulty in suc-
cessfully regulating these reactions due to their stress-
related excess, and especially if such a regulatory role

Fig. 3. Relationship between soldiers’ stress symptoms and their behavioral, emotional and brain indices of anger. (a) and (b)
show that lower Post-Traumatic Stress Disorder Check-List –Military (PCL-M) scores post-combat training were predicted by
pre-combat training higher total gain (Spearman’s ρ =−0.450, p = 0.014, n = 29) and higher ventromedial prefrontal cortex
(vmPFC) activation during unfair offers (ρ =−0.524, p = 0.009, n = 24), respectively. ILS, Israeli New Shekels. (c) Higher increase
in brainstem (BS)/locus coeruleus (LC) activation during unfair offers between pre- and post-combat training (calculated as
post – pre) was related to higher PCL-M scores post-combat training (ρ = 0.495, p = 0.027, n = 20).
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appears to be a priori flawed. Further investigations are
needed to solidify this proposition, while taking into
account the underlying molecular interaction between
the PFC and the LC-NA system (Arnsten et al. 2015)
under stressful conditions, and especially in clinical
populations.

Furthermore, it is important to consider that several
neurobiological systems interact and are involved in
response to stress (Pitman et al. 2012) as in anger
(Gilam & Hendler, 2015). The LC-NA system, for
example, governs autonomic arousal which is an
important component in the physiological response of
anger and aggression (Stemmler, 2010).
Pharmacological interventions increasing NA in the
brain have been shown to have anxiolytic effects in
PTSD patients (Southwick et al. 1999). Evidence sug-
gests a differential pattern of autonomic responsivity
to traumatic stimuli between PTSD patients and con-
trols, but not during rest or in response to non-traumatic
stimuli (Bremner et al. 1996; Vedantham et al. 2000). This
may indicate that LC-NA alterations in PTSD are con-
text dependent, and in view of the engagement of this
system in anger and aggression, may thus be especially
exposed during anger-prone instances. Interestingly, it
is suggested that high levels of NA during stress may
weaken PFC functionality (Arnsten et al. 2015). The ser-
otonergic system, on the other hand, has inhibitory
effects on the LC and has been shown to be involved
in anxiety, anger, impulsive aggression and emotion
regulation (Young & Leyton, 2002; Canli & Lesch,
2007; Yoon et al. 2012), as well as with behavior in the
UG (Crockett et al. 2008; Emanuele et al. 2008). This
may offer an interesting avenue for future investiga-
tions, especially in view of anxiety treatments based
on dual-reuptake inhibitors of both serotonin and NA
(Baldwin, 2006).

We recently proposed a model which aimed to dis-
entangle predisposing from acquired neural abnormal-
ities of PTSD (Admon et al. 2013b), highlighting
hyperactivity of the amygdala and dorsal anterior cin-
gulate cortex as predisposing factors and vmPFC–
hippocampus hypoconnectivity as an acquired factor,
with the insula, dorsomedial PFC and nucleus accum-
bens (NAcc) suggested as possible mediators. The
model was based on several research approaches,
most of which implemented paradigms such as view-
ing neutral and emotional faces or pictures. As far as
we know, only one prospective study implemented
an interactive game, though tapping into individuals’
sensitivity to risk and reward, not to anger, and reveal-
ing that an acquired imbalanced relation between the
amygdala and NAcc best predicted traumatic stress
symptoms following exposure to combat (Admon
et al. 2013a). Our current study introduces yet another
interactive paradigm, further emphasizing the

importance of social interactions in emotional experi-
ences (Gilam & Hendler, 2016), and especially for
inducing genuine anger and aggressive retributions.
Hence, we may test for predisposing and acquired
neural factors in a demanding and anger-provoking
dynamic interpersonal situation that imitates real-life
occurrences in which PTSD patients are prone for emo-
tion dysregulation and maladaptive behavior. We per-
tain that to fully untangle the circular relation between
trauma/stress and related psychopathologies, one
should deconstruct psychological manifestations by
their process domain and examine brain functionality
in the relevant context (e.g. risk and reward, interper-
sonal anger). Such a context-dependent neurobehavioral
approach may advance the characterization of
trauma-induced psychopathology and assist in tailoring
personalized interventions in psychiatry, for example by
using neurofeedback (Keynan et al. 2016).

This study’s results support previous findings based
on self-report questionnaires (Heinrichs et al. 2005;
Meffert et al. 2008; van Zuiden et al. 2011; Lommen
et al. 2014) that anger dysregulation has a specific contri-
bution to stress symptoms, not only as a consequence of
but also as a possible cause for their development. We
expanded on these results by inducing interpersonal
anger using a dynamic social-interactive paradigm and
measuring its behavioral and neural concomitants,
showing specific anger-related brain activations sensitive
to the development and manifestation of stress symp-
toms. Notwithstanding, several important limitations
must be considered. The neurobehavioral indices of
anger explained only about a third of the variability in
combat training stress symptoms, leaving a proportion
of variability to factors such as previous possible stress-
ful experiences that were not assessed. Additionally, the
specific characteristics of the current sample, being small
in size, all of male gender from a military cohort and
reflecting stress symptoms following combat training
and not actual traumatic events, may limit the generaliz-
ability of these findings to clinical conditions and should
be addressed in future studies. Nevertheless, this study
reveals the importance of understanding functional
impairment in subclinical symptomatic populations
(Grubaugh et al. 2005; Jakupcak et al. 2007; Cukor et al.
2010). This is especially crucial in populations with
high risk of traumatic stress exposure, as in the current
sample of to-be-deployed combat soldiers. In conclusion,
from a therapeutic perspective, since anger restricts and
impedes treatment efficacy of PTSD (Forbes et al. 2008),
treating anger is of high priority as it may ultimately
improve also other PTSD-related symptoms. We thus
hope that this study may provide a springboard for
the development of both pre-exposure inoculation treat-
ment for at-risk populations and post-exposure
process-targeted interventions for patients with acquired
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deficits, based on the idiosyncratic behavioral and neural
indicators of maladaptive interpersonal anger.
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